Metabolic Inactivation: A Mechanism of Human Tumor Resistance to Bleomycin1

نویسندگان

  • Said M. Sebti
  • Jitesh P. Jani
  • Jehangir S. Mistry
  • Eli Gorelik
  • John S. Lazo
چکیده

The mechanism of human tumor resistance to the antineoplastic drug bleomycin (BLM) is not known. We now provide evidence implicating metabolic inactivation in the resistance of human Burkitt's (Daudi) lymphoma to BLM. Daudi lymphoma and human head and neck squamous cell carcinoma (A-253) cells grown (s.c.) in nude mice were found to be resistant and sensitive to BLM treatment, respectively. Within l h of s.c. injection of (3H]BLM A2,Daudi xenografts accumulated less BLM and metabolized this drug to a much greater extent than did A-253 xenografts. The BLM-resistant Daudi xenografts metabolized BLM A2 to at least 6 metabolites and only a small proportion of the drug remained as unmetabolized BLM A2. In the BLM-sensitive A-253 xenografts, however, BLM A2 remained the major component. Incubation of BLM \; with Daudi cytosolic fractions resulted in a complex mixture of metabolites similar to that formed by Daudi xenografts in nude mice. This BLM metabolite mixture was biologically inactive in plasmili DNA degradation assays. Treatment of mice bearing Daudi xenografts with an inhibitor of BLM hydrolase, L-fra/w-epoxysuccinyl-leucylamido-(4guanidino)butane (E-64), prior to | 'I I|HI M A2 treatment did not affect the amount of BLM accumulated but inhibited BLM A2 metabolism in the xenografts. Furthermore, although E-64 alone did not inhibit the growth of Daudi xenografts, it potentiated the antitumor activity of BLM. These results indicate that Daudi tumors resist BLM by metabolically inactivating it and that inhibition of BLM metabolism in vivo enhances the antitumor activity of BLM and hence overcomes resistance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metabolic inactivation: a mechanism of human tumor resistance to bleomycin.

The mechanism of human tumor resistance to the antineoplastic drug bleomycin (BLM) is not known. We now provide evidence implicating metabolic inactivation in the resistance of human Burkitt's (Daudi) lymphoma to BLM. Daudi lymphoma and human head and neck squamous cell carcinoma (A-253) cells grown (s.c.) in nude mice were found to be resistant and sensitive to BLM treatment, respectively. Wit...

متن کامل

Human Lung Carcinoma Reaction against Metabolic Serum Deficiency Stress

Cancer treatment is still of the greatest challenges that health care providers and patients are facing. One of the unsolved problems in cancer treatment is cells’ reaction to metabolic stress caused by harsh nutritional conditions around tumor. In order to be able to treat this disease properly, it is important to understand the true nature of the disease. In fact, the cells inside the central...

متن کامل

Human Lung Carcinoma Reaction against Metabolic Serum Deficiency Stress

Cancer treatment is still of the greatest challenges that health care providers and patients are facing. One of the unsolved problems in cancer treatment is cells’ reaction to metabolic stress caused by harsh nutritional conditions around tumor. In order to be able to treat this disease properly, it is important to understand the true nature of the disease. In fact, the cells inside the central...

متن کامل

Investigation on metabolism of cisplatin resistant ovarian cancer using a genome scale metabolic model and microarray data

Objective(s): Many cancer cells show significant resistance to drugs that kill drug sensitive cancer cells and non-tumor cells and such resistance might be a consequence of the difference in metabolism. Therefore, studying the metabolism of drug resistant cancer cells and comparison with drug sensitive and normal cell lines is the objective of this research. Material and Methods:Metabolism of c...

متن کامل

Transient inactivation of the central amygdala modulates metabolic and hormonal responses to acute stress in female rats

Introduction: Current study examined the possible role of the central nucleus of amygdala (CeA) transient inactivation on the metabolic and hormonal disturbances induced by acute electro foot shock stress in female rats. Considering the differences between female and male in responses to stress, this study attempts to reveal possible mechanisms underlying these differences. Methods: Uni- or bil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006